
TI-59 INTERFACE

A universal interface for keyboard control

of a
Texas Instruments Tl-59/Tl-58

pocket calculator
using printer connection points

for digital control
without calculator modifications

by

Torben Rune

February 9. 1981

Table of Contents
Preface 3
Characteristics of the interface 4
Use of the interface system 4
Interface communication 6
Hardware description 7

Firmware in TI-59 7
Interface 8

Input circuits 9
Synchronization decoding 9
ROM control 9
Output buffers 10
EXT code selection 11
State decoding 11
IRG instruction decoding 11
I/O logic for MPU connection 12

Main logic functions 12
Decoding of the trigger word 12
The ROM sequence execution 13
User instruction 14

Logical MPU connection 14
Code sending and input check 15
System startup 18

Calculator connection 19
Bill of Materials 21

Preface
In 1979 Lennart Schultz, student of engineering at the Technical University of
Denmark, developed a high level language for TI-59 (TI-58) pocket calculators. The
language was called TI-hill (Texas Instruments high level language), and it is a
PASCAL-like language, that enables the user to write very powerful and well
documented programs for TI-59 calculators.
In the first versions of the TI-hill compiler, the generated calculator code was simply
printed out, and had to be keyed in by hand. This was indeed an extremely
demanding job, not only because the amount of generated code increases drastic
with the complexity of the program, but also because it is very difficult - faultlessly - to
key in a program when you are unable to see how the program is intended to work.

On that background it was decided to try to build up an interface system that could
enter the generated code into the calculator automatically.

In June 1980 the first attempts to construct such a system was made, but it soon
became clear that it would be quite a hard job. The first attempt wrecked in lack of
knowledge. After benevolent assistance from Texas Instruments it was possible to
continue the construction of the interface, and during the summer vacation 1980 the
interface system scripted in this paper was developed.

Since that, a 8080 MPU system has been equipped with a program system for
handling keycode files generated by the TI-hill compiler, and the whole system has
been used during the passed months at the university without errors. However minor
changes must be made in the TI-hill compiler before the whole system is perfect.

I want to express my thanks to lecturer Henning Isaksson, who has been the
coordinator of the project , and to Texas Instruments for benevolent collaboration.
Torben Rune Petersen

Hillerød, Denmark

February 9th, 1981

Characteristics of the interface
The primary purpose of the interface system is to enable the control a TI-59 (TI-58)
pocket calculator. The system is constructed so that:

1. it is possible to connect the system to a computer, either a large computer
system (if convenient by using a microprocessor system as slave unit) or a
microcomputer.

2. The system should be designed with special reference to the developed TI-hill
compiler, and

3. an arbitrary TI-59 (TI -58) calculator can be connected to the system. This
demand is imposed because the magnetic card readers in TI-59 calculators
are not necessarily compatible.

The developed interface system has the following properties:

The system can be controlled directly by a microprocessor. Special I/O logic has
been adapted for a 8080A based processor system, but all processors can control
the interface by means of relatively simple logic. The controlling of the calculator is
performed by forcing signals on to the signal lines accessible from the printer
connection in the bottom of the calculator. This means, that any TI- 59 (TI-58)
calculator can be used with this system, as there are made no changes to the
calculator itself.

A PC-100C printer (a dedicated Texas Instruments product) can be modified, so that
the connection to the calculator can be made through the connection points in the
printer. (See figure 5 for details).

The interface system can simulate complete keyboard operations. That means, that it
is possible to control the calculator from the system exactly in the same way as if the
operations was made form the keyboard of the calculator. This imply that it is
possible to enter programs into the calculator, that all its calculating functions
(arithmetic function etc.) can be used, so that the calculator can be used as a fully
operational remote unit.

Use of the interface system
The interface is constructed so that its use becomes as simple as possible. This is
achieved by laying the control functions in the hardware system rather than in system
software, so that the user only has to send keycodes to the system, without worrying
about the function of the interface. The system can receive an 8-bits data word from
the connected CPU. When receiving such an 8-bit data word, the interface enters an
active state, controlling the calculator.
During an active state, a BUSY signal is set by the interface. The BUSY signal can be
read from an IN-port in the processor system, or it can be connected as an interrupt
signal to the controlling system. In this (first) implementation the BUSY signal is
connected as an IN port.

A simulated key activation of the calculator is performed by sending the numeric
number of the key in question to the interface (through an OUT-port). The connected
calculator will accordingly execute the function of that key, exactly as if it had been
depressed on the calculator.

The numeric codes for the keys are not all identical to the numbers used by the
calculator for program storeing (the matrix system). Figure 1 shows the hexadecimal
codes for the key entry in this interface system.

It should be noted, that the least significant part of the keycode corresponds to the
row-number of the key.

Because the simulation of the key-depression is exactly the same as manual operation
of the calculator, all activation from the interface must be made as if they were keyed
in form the keyboard. This should be noted specially with respect to merged codes.

 (F.ex. INV DSZ *12 *15 is keyed in by entering: 22 12 29 12 64 28 38 12 64 28 37
with respect to the codes shown in Figure 1).

The following example shows a typical key-in sequence:

The functions to be executed by the calculator are:

Value 3.4 is stored in register 05;
The partitioning is set to 799.19 (2 OP 17);
The following program is entered:

Figure 1: Key codes

LBL A X2 RET ;

After this the calculator must enter RUN-mode.

By using the these codes, the described functions are executed by sending the
following codes to the interface:

CODE FUNCTION

62 CLEAR
58 3
39 ,
27 4
24 STORE
29 0
37 5
38 2
12 2nd
56 9 (OP)
28 1
26 7
13 LRN (enter learn mode)
12 2nd
17 SBR (LBL)
11 A
33 x2

22 INV
17 SBR (RET)
13 LRN (enter RUN-mode)

This example shows that all merged program codes and operations must be entered
slavish as from the calculator keyboard. In the section "User description"

further

details on program codes and error checks are given.

Interface communication
All codes are send to the interface through an OUT-port, in a 8080 system by the
instruction:

OUT nn

where nn is the number of the port, given by the selector switch in the I/O logic. The
system status word "C" the "BUSY" signal) can be connected to an IN-port on the
same (nn) address.

As long as the "BUSY" signal is "0" it is recommended to send a code to the OUT-
port. As long as "BUSY" = "1" the contents of the OUT-port must remain unchanged until
"BUSY" = "0".
The synchronization check bit can be read when the "BUSY" line is "0". For proper
synchronization the "SYNK OK" bit must be "0"

while BUSY is "0". If the calculator and

) .

the interface is not synchronized a new start-up procedure must be performed (see
section "Hardware description").

The time necessary to execute a instruction is depending on how long it will take the
calculator to perform it. The time can vary from few mS up to many seconds. If the
calculator is programmed in LRN-mode the meantime for a total programming of all 960
program steps is approx. 90 seconds, however the speed is depending on the
structure of the program (i.e. the number of merged operations).

H ardware description

Firmware in TI-59

All functions in the calculator exists in a so called SCOM (Scanning read Only
Memory). This ROM memory contains all the programs the calculator executes -
when it is operating - in micro program form (i.e. instruction words to control the logic
function of the calculator).

Prior to constructing this interface system, it was examined how the calculator operates
when a key on the keyboard is depressed. By means of a logic-analyzer a series of
micro instructions was analyzed. Especially the instructions initiated by a key activation
has been inspected. Figure 2 shows a printout from the logic-analyzer.

The three channels used are:

03: the IDLE signal in the calculator. Idle is a synchronization signal indicating
one instruction period of 16 clockcycles

Figure 2: Logic analyzer dump

04: shows the IRG line, a signal line that transports micro-instructions from the
SC0Ms to all other devises in the calculator system. The functions of the IRG
instructions are noted on the figure, and is explained in details in the following.

05: shows the EXT line, a status- and data line used in the calculator to
transport status- and data information between different devises in the system.

The keyboard in the calculator is scanned by the KBD(KS) instruction. The
scanning starts in state D15 and continues through D14, D13 ... to D0, after which a
hardware construction in the calculators processor circuit makes a test, to see if any
key has been depressed. The test executes a conditional (relative) branch. If a key
has been activated a COND (condition) latch in the processor will be set, and this is
shown by putting the C-bit in the EXT line signal low ("0").
By branching on "if COND = "1"

goto -1F" the scanning cycle will continue as long as no

key is activated. (Note, the relative goto -1F corresponds to a loop 31 memory steps
backwards in the microcode of the calculator).

If COND is "0" the system will start to execute the microcode corresponding to a key
activation.

The calculator microcode makes some extra checks on the keyboard register (in the
following called KR). Bit 2 to 5 in KR are tested by the operations TRK(4) (Test
Keyboard Register bit 4 (..2)). If non of this bits are set, some error condition must
have occurred (non of the keys have a code beginning with 0 or ending with 0). If this
is the case, the execution is stopped and a branch back to the start of the scanning
cycle is made. If the contents of the KR is all right, the IDLE flip-flop is reset (which
will increase the clock frequency in the calculator) and the calculator executes the micro
instruction program connected to the key in process. It can be noted how IDLE shifts
from DISPLAY- to CALCULATE mode (IDLE is phase shifted).

The main idea behind this interface system is, to interrupt the micro program
execution in such a way, that the calculator system can be tricked to act as if a key
had been depressed. The interruption of the micro program cycle should occur exactly
when the "BRANCH 0N C -1F" is executed.

If this BRANCH micro instruction is "destroyed" and overwritten by a"FILL KR"
instruction, the calculator system will perceive this as a normal key depression, and
will consequently start an execution of the micro program connected to the contents
of the KR.

The function of the interface is thus:
When a BRANCH 0N C -1F is discovered on the EXT line, the micro program sequence
is stopped by by overwriting a "FILL KR"

instruction, after which the BRANCH instruction

is destroyed by executing e BRANCH ON C 00 and the control is given back to the
calculator without any further interruptions.

Interface

The following description of the whole interface system is divided into 8 parts, each
describing the hardware functions in the system. The 8 parts are:

1 Input circuits for signal conversion
2 Synchronization decoding
3 Sequence control by means of ROM memory and counters
4 Output buffers for signal impress in the calculator
5 EXT signal from shift register
6 Calculator state decoding
7 Decoding of BRANCH cycle
8 Other logic for MPU connection (8080 I/O subsystem)

The function of each part, and its place in the interfacesystem is explained.

Input circuits
The interface system is build TTL logic. The Calculator is made in PMOS technique
with logic states in the voltage interval O to -16 V, hence a signal level conversion is
needed. The conversion is achieved by connecting the ground (Vss) in the calculator
to an external +10V power supply (+10V with respect to the TTL system ground). As
CMOS buffer circuit CD4050 (IC1) is used for for input conversion from PMOS.

The signals from the calculator are connected to the inputs of the buffers via 10
kOhm resistors.

The signals to be used in the interface are:

 The two clocksignals Ø1 and Ø2
 the IDLE sync. signal and
 the IRG line signal. (See also figure 5 for calculator connections).

Synchronization decoding
The negative going edge of the IDLE signal indicates the start of the S0 state of the
calculator. Many functions in the interface need a short puls at state S0. Such a puls
is genrated in a mono stable latch IC3 (74LS221).

The time constant is very short - approx. 50 nS. The latch is triggered at the
negative going edge of IDLE and so the internal generated IDLEX signal can be used
directly to control reset and other interface functions.

ROM control
The interface is build as a sequence machine with its controlling instructions stored in
a ROM (IC11).

A ROM type 2700 is used, but any memory circuit with 8 bits output and a minimum
of 64 words can be used. (In later versions the 2700 UVPROM was replaces by an
EEPROM type 28C64).

The addresses for the ROM are generated in two synchronous counters IC8 and IC9.
Thees counters are clocked with Ø1, and are in this way working in parallel with the
state decoder in
the calculator system. Each of the 8 bits from the ROM have separate functions.

These functions are:

BIT 0: IRGKODE used to generate codes for the IRG line to the calculator. The
sending of data on the IRG line is controlled by the IRGEN signal.

BIT 1: IRGEN. This bit controls the output buffer circuit for sending data on the IRG
line. If the IRGEN = "0" the buffer is open for transmission of IRGKODE data to the
IRG line.

BIT 2: EXTKODE. If a specific code is to be send to the EXT line, it can be stored as
bit 2. It is possible to select the source of the EXT code. Either the code comes form
the ROM or form a shift register.

BIT 3: SHIFT/CODE determines the source of the EXT code. Bit 3 = "1" enables
userdata from the shift register (explained later), and bit 3 = "0" enables EXT data
from bit 2 of the ROM.

BIT 4: EXTEN, when "0" the EXT line buffer is enabled, allowing data from the
interface to be send to the calculator.

BIT 5: EXTLOAD controls the loading of the shift register for EXT codes. Because
the shift register is clocked by Ø1 , the load signal must appear 1 clock state before
the sending of the EXT code form the shift register is started.

BIT 6: STOP controls the counters so that a STOP bit can stop the ROM counters
and make the interface system enter a "SYNC OK" state.

BIT 7: CIRCULATE makes sure that the counters are enabled when a sending
sequence is started.

Because the ROM counters are clocked on Ø1, a new word from the ROM is read
out at every calculator state. This makes it very easy to store IRG and EXT
instructions in the ROM.

BIT 6 and BIT 7 can only be programmed in one way. The STOP bit must always be
at "1" except in the ROM word following the last code word in the ROM. BIT 7 must
always be "0" except for the first and the last ROM word. The two line control signals
(the IRGEN and EXTEN) must always be disabled in the first and the last ROM word.

Sending of code is initiated by the MPU system by setting the latch IC13 (74LS74).
By this, a load signal through IC13 is submitted to the ROM counters. All preset-inputs
to this counters are at "0". The load signal forces the counters to send address 00 to the
ROM. In this state the system is in a idle-mode, awaiting a start signal to begin code
sending.

The start signal occurs when the IRG instruction BRANCH ON C -1F is decoded in
the IRG decoding logic. The start signal enables the counter-clock inputs, and the
ROM codes
are now controlling the EXT and the IRG lines in the calculator.

Output buffers

To impose signals on to the EXT and the IRG lines in the calculator, special buffer
circuits are necessary. The buffer consists of two transistors and two TTL tri-state
buffers IC18 and IC20 (74LS125). By controlling the two transistors form the TTL
buffers it is possible to:

1 convert the TTL logic level to the PMOS level in the calculator, as well as
generating the necessary current to overwrite the signals on the calculator
lines, and

2 disable the buffer circuit by disabling the TTL buffers, so that the ON/OFF
control of the line buffers becomes very simple.

The buffer stage is works inverted in the calculator, so that a logic "1"

from the TTL logic

is perceived as logical "0" by the calculator. It is important to supply the calculator with
the correct logical values, observing that inverse IRG codes are send from the ROM
and that inverse EXT codes are send from the selector logic.

EXT code selection
From the MPU system a 8-bit data word can be written into a 8-bit wide shift register
IC7 (74LS165). The loading of this register is controlled by BIT 5 in the ROM word.
The output from this shift register is connected to a selector logic consisting of IC2
and IC1O. The selection of the EXT code is controlled by BIT 3 in the ROM word.
The output form the two NAND gates are OR'ed and the output is connected to the
EXT line buffer logic.

Data form the shift register is clocked by Ø1. The calculator system reads the IRG
and EXT codes on the negative going edge of Ø2. Because the ROM counters are
working synchronous with the calculator statecounter the load signal to the shift register
must be generated one clock cycle before the first bit in the register is to be used as
a EXT data bit.

State decoding
The internal S states of the calculator are decoded by the counter IC4 (74 LS161).
The counter is clocked by Ø1 and it is reset by IDLEX. The output from the counter is
thus representing the actual calculator state. From the state decoding a EOC (End Of
Cycle) signal is generated.
This signal is "1" when the calculator is in display-mode (i.e. the internal IDEL latch is
set, slow clock), and "0" when the calculator is in calculate-mode (IDLE latch reset, fast
clock). The EOC signal is generated by "reading" IDEL over Ø2 (this is done in IC5) and
then use this signal to clock the decoded S1 state. If IDLE indicates display-mode a "1"

will be clocked into the latch, otherwise a "0"

is clocked in.
The EOC signal is used to control the BUSY latch IC13, and together with the decoded
IRG line signal to enable the ROM counters.

IRG instruction decoding
The decoding of the IRG instructions are done successively bit by bit in each
calculator state. The bit sequence to decode is the binary representation og the
BRANCH instruction and is set up on the inputs of a 16 to 1 decoder IC21
(74150),which is supplied with the calculator state counter output from IC4. The
output from the decoder is directly compared to the IRG line signal in a EXCLUSVIE

OR gate IC14. The result of the comparison is clocked into a JK latch on Ø2. If all
bits on the IRG line matches the bit combination om IC21 then a "0" is clocked into
the JK latch.

If there is no match, then a "1" is clocked in, and this "bit-error" stays here until it is
clocked into the next JK latch. (Bit error here means, a no match, i.e. we are still
waiting for the BRANCHE command to appear on the IRG line).

The first JK latch is reset by IDLEX after a complete instruction cycle. The second JK
latch is clocked by the ripple carry clock from the state counter IC4. The ripple clock is
active in state S15. This means that only the 15 first bits (from calculator state S0 to
S14) are included in the comparison. The last bit in the IRG words indicates to the
calculator system , if a unconditional un-relative branch is to be executed. Because
all conditional branches all have three "0"

as first bits

it is not necessary to include the last state 15 bit in the decoding of the branch
instruction. If the bit comparison shows consistency the Q output from the second JK
latch is "1". If the calculator is still in display mode (with EOC="1") the START/STOP
latch IC6 input is supplied with a "0". At the next IDLEX (the next S0 state) this "0" is
clocked into the START/S TOP latch and if the ROM counters are loaded with
address 00 (i.e. that the first ROM word is on the output of the ROM) a code sending
sequence is started. If the ROM is not at address 00, the system is waiting for a load
puls from the MPU, and a new branch instruction must be decoded before a code
sending can be executed.

I/O logic for MPU connection
The constructed I/O logic is developed for a 8080A micro processor system. For other
MPU systems the I/O subsystem can be modified so that it will fit the desired
processor system. The following property of the I/O subsystem should be noted:

The word read by a IN nn instruction (nn is the number of the port selected by the
switch), only contains information in the two least significant bits. BIT 0 is the BUSY
signal from IC13 and BIT 1 is the STOP signal from the ROM. The STOP signal
indicates if the calculator is synchronized with the interface, because the ROM
counters, if no error states has occurred, always stops when STOP ="0".

Main logic functions
The main logical functions are system functions that are not directly given by the
hardware of the system. The functions in question are the sequence of IRG and EXT
codes in the. ROM and the selection of the "trigger word" from the IRG line.

Decoding of the trigger word
As described, the micro prograrn execution in the calculator must be interrupted
immediately after a complete keyboard scanning, where the conditional branch tests
the KR. The binary value of the branch instruction can be found in the logic analyzer
printout (Figure 2), and for TI-59 and TI-58 calculators it is:

S0 S15
 0001111110000011 = 0xC1F8

This means that to decode this branch instruction, the value 0xC1F8 must be set on

the decoder circuit IC21. It should be noted, that for TI-58C calculator, the branch at
this point is made to another location. To use the system with a TI-58C it is
necessary to change the trigger word. The TI-58C trigger word is not available at this
point.

The ROM sequence execution
During execution of micro instructions in the calculator, an internal micro program
counter is counted up. When a micro instruction is read from a specific address, the
contents of the micro program counter is adjusted depending of the three control bits
transmitted in the following instruction cycle (on the EXT line). This means, that the
contents of the micro program counter remains unchanged until state 23 in the
following instruction cycle. This fact is very important with respect to the possibilities
of sending 'false' signals to the calculator. Thus it is utilized that the micro program
counter can be stopped by setting the HOLD bit in the EXT control word. When a
branch instruction is decoded from the IRG line, the interface system starts by sending
"false" codes in the following instruction cycle, in witch the HOLD bit is set. In the
succeeding cycles the HOLD bit remains set, so that the program counter, after the
HOLD bit has been resat, will point to the micro instruction immediatly after the
branch instruction. shows how the micro-processor instructions in the calculator
system are build up and how the "false" instructions are placed in the micro program
sequence.

While the micro program execution is stopped (after decoding of the BRANCH ON C -
1F) three "false"

micro instructions are executed. The purpose of thees instructions

are partly to enter a keyboard value in the keyboard register (KR) and partly to
overwrite the branch instruction. The three micro instructions entered on the IRG line
are:

The function of each instruction is:

1.a Set the clock frequency fast and force the calculator system into calculate mode
. At the same time the HOLD bit on the EXT line is set.

1.b Fill the KR with the value transmitted on the EXT line, and keep the HOLD bit
set.

1.c Destroy the old branch instruction by jumping nowhere (+00 relative to the
current contents of the micro program counter).

After this both line transmitters are disabled, and the calculator system now executes
the instruction exactly as if a key had been depressed on the keyboard. The value
entered into KR determines witch key-function the calculator then will execute.

User instruction
To make the user instruction more clear it is divided into three parts covering:

1 The logical connection between MPU and interface.
2 Code sending. How to enter keycodes for proper calculator operation.
3 Startup of the system.

Logical MPU connection
Figure 4 shows an example of an I/O subsystem developed for a 8080A processor
system. There are two fundamentally ways to connect a I/O subsystem to the interface.

The databus (8-bit wide) can be connected directly to the shift register IC7.

Figure 3b: Next executed instruction after release

Note that the S state indicates at what calculator sequence state the individual bits
are transmitted to the EXT line.

The shown connection implies, that the dataword send to the shift register has
exactly the same format as the KR register contents when a key is depressed.
The hexadecimal values shown in figure 1 and in table 2 is based on this form of
connection. The method has a disadvantage because the codes are representing the
keys in reverse order with respect to normal matrix notation.

Example: The C key has in ordinary notation the code 13 but the value 31 must be
send to the interface system because the KR register in the internal calculator
system is read backwards.

This inconvenience can be avoided, so that the key codes can be transferred in
normal TI-59 format.This is done by exchanching the four least significant bits in the
dataword with the four most significant bits. A connection like that implies that the
row number becomes the first part of the data word, and the column number becomes
the last part, however the column number will be out of order for column 4 and 5
(represented by the values 5 and 6). The schematic connection of the latter
connection method is shown below:

Code sending and input check
As described in the introduction, it is fairly easy to send codes to the calculator through
the interface system. However some error-situations may occure if the output data
words are not checked before they are send to the interface. The errors will occure in
the calculator, if the keyboard register is filled with an "illegal"

keyboard code. An

Figur 4: Connect databus directly to shift register IC7

Figur 4a: Revers order interface connection

"illegal"

code is a code containing a non existent keyboard column number (column

0, 4 and column numbers greater than 6 does not exist) or a nonexistent keyboard
row number (row numbers greater than 9 or equal to 0).

The micro program in the calculator is not able to check if the contents of the KR is
legal, and the calculator will perform nonsense operations if the KR register holds a
wrong code. In most error situations the calculator will lock up in an endless loop in
calculate mode. That means that the EOC logic in the interface never recieves a
"ready" signal, and hence further code sending is not possible.

The only way to get out of such a loop is to turn off the calculator and then go
through a new startup procedure . All programs controlling the interface should
therefore implement suitable error-check routines to catch wrong key codes.

To facilitate the entry of merged codes the table below shows how all forms of
merged codes can be programmed. The values in the table is based on direct
MPU/shift register connection (i.e. databit 0 in S03 to pin no. 6 and D7 in S10 to pin
no. 11).

System startup
The startup procedure is in many ways dependent on the properties of the MPU
system. The following general points show how a typical startup may take place:

1 Turn on the MPU system and all equipment connected to the processor,
including the +5V power supply for the interface system

2 Connect the interface system to the calculator.

3 Turn on the +10V power supply to the interface.
4 Now the calculator can be turned on. If the calculator enters calculate mode (the

display turns off) it can probably be brought back to display mode by pressing
the R/S k ey. If not, turn the calculator off and on again. It should be noted that it
is the internal calculator clock that controllers the interface system, and that this
point in the startup procedure is not depending on the MPU system.

It should also be noted that the +l10V power supply always must be on when the
calculator is turned on. It will not damage the calculator if not, but it may be difficult to
get it into display mode .
When the calculator is under control of the interface system it is a good rule not to
touch any key on the keyboard.

If a key is depressed, the interface will stop further code sending until the key is
released, however the key activation may disturb the sequence of codes from the
controlling system.

Calculator connection

This figure shows how to connect the calculator with the interface system. The
calculator is shown form the back with the battery pack removed. The lowest row
of connection points are connected to the respective interface lines. The Vss
ground terminal in the calculator is connected to a 10V power supply.

*) The calculator can be supplied in several ways, for instance by:

a an external 3.75 V power supply
b the removed battery pack
c if used on a PC-100C printer, the internal printer supply.

If a printer is used, the connection to the connection points becomes very easy.
Wires can simply be soldered to the solder points in the printer.

Bill of Materials

Id Designator Package Quantity Designation

1 J10 PinHeader_1x25_P2.54mm_Horizontal 1 Micro controler and Power connector

2 MountingHole_3.2mm_M3 4 MountingHole_3.2mm_M3

3 Logo TELEANALYSE 1 LOGO

4 Open HW logo OSHW-Symbol_6.7x6mm_SilkScreen 1 OSHW-Symbol_6.7x6mm_SilkScreen

5 R19,R5,R6,R9,R10,R13,R14,R18 R_Axial_DIN0309_L9.0mm_D3.2mm_P12.70mm_Horizontal 8 1k

6 R1,R2 R_Axial_DIN0309_L9.0mm_D3.2mm_P12.70mm_Horizontal 2 3k9

7 U22 DIP-14_W7.62mm 1 74LS73

8 U12 DIP-14_W7.62mm 1 74LS27

9 U13,U5,U6 DIP-14_W7.62mm 3 74LS74

10 U21 DIP-24_W15.24mm 1 SN74150

11 C1,C2 C_Axial_L3.8mm_D2.6mm_P7.50mm_Horizontal 2 100p

12 Q1,Q3 TO-92_Inline 2 2N3906

13 Q2,Q4 TO-92_Inline 2 2N3904

14 R3,R7,R11,R15,R16,R17 R_Axial_DIN0309_L9.0mm_D3.2mm_P12.70mm_Horizontal 6 10k

15 R8,R12 R_Axial_DIN0309_L9.0mm_D3.2mm_P12.70mm_Horizontal 2 1k2

16 SW2 SW_DIP_SPSTx08_Slide_6.7x21.88mm_W7.62mm_P2.54mm_LowProfile 1 SW_DIP_x08

17 U1 DIP-16_W7.62mm 1 4050

18 U2,U19 DIP-14_W7.62mm 2 74LS04

19 U3 DIP-16_W7.62mm 1 74LS221

20 U4 DIP-16_W7.62mm 1 74LS161

21 U7 DIP-16_W7.62mm 1 74LS165

22 U8,U9 DIP-16_W7.62mm 2 74LS191

23 U10 DIP-14_W7.62mm 1 74LS03

24 U15,U14 DIP-14_W7.62mm 2 74LS136

25 U17 DIP-14_W7.62mm 1 74LS00

26 U18,U20 DIP-14_W7.62mm 2 74LS125

27 J11 PinHeader_1x11_P2.54mm_Horizontal 1 TI59 Calculator connector

28 U11 DIP-28_W15.24mm_Socket 1 2764

29 U16 DIP-20_W7.62mm 1 74LS377

	Preface
	Characteristics of the interface
	Use of the interface system
	Interface communication
	Hardware description
	Firmware in TI-59
	Interface
	Input circuits
	Synchronization decoding
	ROM control
	Output buffers
	EXT code selection
	State decoding
	IRG instruction decoding
	I/O logic for MPU connection

	Main logic functions
	Decoding of the trigger word
	The ROM sequence execution
	User instruction
	Logical MPU connection
	Code sending and input check
	System startup

	Calculator connection
	Bill of Materials

